

Course Syllabus Gyanmanjari Institute of Technology Semester-3 (B.Tech.)

Subject: Computational Mathematics – II – BET1CE13307

Type of course: Major (Core)

Prerequisite:

Rationale: Computational Mathematics - II aims to build an applied understanding of advanced mathematical concepts used in engineering. The course includes modules on probability, numerical methods, optimization, and graph theory, presented through a practical lens. Emphasis is on simulations, conceptual clarity, and step-wise calculations using visual tools like Excel or graph paper and online Tools to prepare students for real-world data-driven tasks.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examinat	Total	
CI	T	P	C	SEE	CCE	Marks
4	0	0	4	100	50	150

Legends: CI-Class Room Instructions; T – Tutorial; P - Practical; C – Credit; SEE - Semester End Evaluation;; LWA - Lab Work Assessment; V – Viva voce; CCE-Continuous and Comprehensive Evaluation; ALA- Active Learning Activities.

Course Content:

Sr. No	Course Content	Hrs.	% Weightage
1	Probability, Statistics for Data Science Applications: Probability, Types of probability: Conditional Probability, total Probability, Bayes' Theorem, Random Variables, Expectation, Mean, Variance, Standard deviation, Probability Distributions: Binomial Distribution, Normal Distribution, Poisson Distribution, Mean, Mode, Median. Practical: 1. Visualizing Probability Distributions 2. General Probability Distributions	12	20%
	 Conditional Probability & Bayes' Theorem Simulation Descriptive Statistics – comparison of central tendencies 		

	Sr No.	Evolution Methods	SEE	CCE		
	1.	Statistical Reasoning Quiz	15			
	2.	Data Plotting & Distribution ID Task	05			
	3.	Active Learning Assignment: Predictive Chart Making: Regression Use Case		10		
		Total:	20	10		
		Methods & Approximation Techniq				
2	Root Find Method, I Newton Difference Simpson's Practical: 1. Gr 2. Int	ding Algorithms: Bisection, Newton nterpolation and Approximation: Lagratorical Section and Newton backward, Numerical Differentiation and Integral 1/3 Rule, Simpson's 3/8 Rule.	n-Raphsorange Int Newton's ration: T	erpolation: s Divided rapezoidal,	12	20%
3	Numerical Solution for Ordinary Differential Equations: Ordinary Differential Equations (ODEs): Euler's Method, Runge-Kutta Methods: second order and fourth order method, Taylor Series, Maclaurin Expansion & Approximations. Practical: 1. Visualizing Euler's Method 2. Comparing Taylor and Maclaurin Series Approximations 3. Runge-Kutta Method Visualization Sr No. Evolution Methods 1. Applied Methodology Open-Book 20 Assessment 2. Task: 10				12	20%

		Numerical Method Showdown – Euler vs RK4				
		Total:	20	10		
	Optimizati	ion Methods: on Techniques: Gradient Descent, L	inear Pro	ogramming:		
4	Practical: 1. Vis 2. Sol	sualizing Gradient Descent living Linear Programming using Graph ploring Nonlinear Programming (NLP)	nical Met	hod	12	20%
	Sr No.	Evolution Methods	SEE	CCE		
	1.	Practical: Linear Programming	15			
	2.	Mini Quiz: Optimization Logic Check	05			
	3.	Project – Real-Life Application of Optimization		10		
		Total:	20	10		
5	Project and Case Studies: Application of above topics in engineering cases like quality control, resource allocation, optimization in processes Practical: 1. Quality Control using Probability & Statistics 2. Resource Allocation using Linear Programming 3. Process Optimization using Multivariable Calculus				12	20%
1	Sr No.	Evolution Methods	SEE	CCE		
	1.	Mini Project Presentation (with Report/Charts)	20	10		
	2.	Viva	20	10		
		Total:	20	10		

Suggested Specification table with Marks: 150

			ution of Marks loom's Taxonom			
Level	Remembrance (R)	Understanding (U)	Application (A)	Analyze (N)	Evaluate (E)	Create (C)
Weightage %	10%	10%	35%	30%	10%	5%

Course Outcomes (COs):

After lea	rning the course, the students should be able to:		
CO1	Understand and apply statistical techniques to engineering datasets.		
CO2	Solve real-world numerical problems through approximation techniques.		
CO3	Apply stepwise solution methods for ordinary differential equations.		
CO4	Optimize problems using graphical and simplex approaches.		
CO5	Work collaboratively on mini-projects using mathematical tools and present findings effectively.		

Instructional Method:

The course will be delivered using a mix of traditional and interactive strategies suited for Computer/IT/CE students. In addition to blackboard teaching, the faculty may adopt:

- Flipped Learning for at least 10% of topics using NPTEL/SWAYAM/YouTube content with in-class application.
- Tool-Based Demonstrations using Excel, GeoGebra, Desmos, and Mathstools to simulate root-finding, optimization, truth tables, and linear programming.
- Worksheet-Based Simulations for step-by-step manual execution of numerical methods, matrix operations, and interpolation.
- Collaborative Group Activities like method comparison tasks, graph-building with tokens, and optimization challenges.
- Mini-Projects using real or simulated data sets for resource planning, quality control, or regression modeling.
- Gamified Assessments through MCQs, quizzes, and error-spotting puzzles for concept reinforcement.
- Use of Virtual Labs and Online Calculators to reinforce logic without coding dependency.

Internal evaluation includes Active Learning Assignments, mini-projects, and quizzes. Practical/Viva exams will assess applied skills at semester-end.

Reference Books:

- 1. Advanced Engineering Mathematics By Erwin Kreyszig, Wiley India Pvt. Ltd
- 2. Numerical Methods and Optimization: An Introduction By Sergiy Butenko & Panos M. Pardalos, CRC Press (Taylor & Francis Group)
- 3. Numerical And Statistical Methods For Computer Engineering, By Ravish R. Singh, MCGRAW Hill Education Pvt Ltd

